Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Path Planning Using Non-Euclidean Metric

2013, Edvards Valbahs, Grabusts, Pēteris

In order to achieve the wide range of the robotic application it is necessary to provide iterative motions among points of the goals. For instance, in the industry mobile robots can replace any components between a storehouse and an assembly department. Ammunition replacement is widely used in military services. Working place is possible in ports, airports, waste site and etc. Mobile agents can be used for monitoring if it is necessary to observe control points in the secret place. The paper deals with path planning software for mobile robots. The aim of the research paper is to analyze motion-planning algorithms that contain the design of modelling software. The software is needed as environment modelling to obtain the simulation data. The simulation data give the possibility to conduct the wide analyses for selected algorithm. Analysis means the simulation data interpretation and comparison with other data obtained using the motion planning. The results of the careful analysis were considered for optimal path planning algorithms. The experimental evidence was proposed to demonstrate the effectiveness of the algorithm for steady covered space. The results described in this work can be extended in a number of directions, and applied to other algorithms.

No Thumbnail Available
Publication

Path Planning for Process Modelling in Chemical Engineering

2014, Edvards Valbahs, Ilo Dreyer, Grabusts, Pēteris

Usually, when the practical motion planning and the shortest path are discoursed, mainly the limited number of tasks is observed. Almost all the tasks associated with the path from one point in 2D or 3D space to another point can be attributed to the usual issue in the practical application. Motion planning and the shortest path have vivid and indisputable importance as human activity in such areas as logistics and robotics. In our work we would like to draw particular attention to the field of application seems to be unnoticeable for the task such as motion planning and the shortest path problem. Due to quite simple examples used, we would like to show that the task of motion planning can be used for simulation and optimization of multi-staged and restricted processes which are presented in chemical engineering accordingly. In the article the simulation and optimization of two important chemical-technological processes for the chemical industry are discussed. The work done gave us the possibility to work out software for simulation and optimization of processes that in some cases facilitates and simplifies the work of professionals engaged in the field of chemical engineering.

No Thumbnail Available
Publication

Path Planning and Process Modelling for Chemical Engineering

2014, Edvards Valbahs, Ilo Dreyer, Grabusts, Pēteris

Usually, when the practical motion planning and the shortest path are discoursed, mainly the limited number of tasks is observed. Almost all the tasks associated with the path from one point in 2D or 3D space to another point can be attributed to the usual issue in the practical application. Motion planning and the shortest path have vivid and indisputable importance as human activity in such areas as logistics and robotics. In our work we would like to draw particular attention to the field of application seems to be unnoticeable for the task such as motion planning and the shortest path problem. Due to quite simple examples used, we would like to show that the task of motion planning can be used for simulation and optimization of multi-staged and restricted processes which are presented in chemical engineering accordingly. In the article the simulation and optimization of two important chemical-technological processes for the chemical industry are discussed. The work done gave us the possibility to work out software for simulation and optimization of processes that in some cases facilitates and simplifies the work of professionals engaged in the field of chemical engineering.