Options
Lazov, Lyubomir
Preferred name
Lazov, Lyubomir
Official Name
Lazov, Lyubomir
Alternative Name
Lyubomir Lazov
Lazov, Lyubomir Kostadimov
Email
lyubomir.lazov@rta.lv
Scopus Author ID
55384203700
Researcher ID
E-6011-2012
Research Output
Now showing 1 - 1 of 1
- PublicationInvestigation of the Influence of Some Parameters on the Process of Color Laser Marking(2023)
;Emil Yankov; ; Nikolay AngelovThe research and development of laser marking technology offers numerous advantages and applications in a variety of industries, from manufacturing and electronics to healthcare and beyond. In industries such as aerospace and automotive, where components must adhere to strict regulatory standards, laser marking can provide the necessary traceability and compliance. Investing in its research and development improves precision, efficiency and innovation, ultimately contributing to advancements in various sectors and driving economic growth.For this purpose, various surface treatment methods are being studied, including laser marking. As can be seen from our previous studies and those of other authors, laser marking of steel surfaces is a complex process and depends on the complex relationships between a number of technological parameters. In this study, we focus on the influence of four of them (parameters: processing speed, laser pulse frequency, pitch between raster lines during laser processing and energy density). During the experiments, the raster step was varied in the range of 20 µm to 80 µm, the velocity was in the range of 25 mm/s to 125 mm/s, and the density was in the range of 5.82 J/mm2 to 29.12 J/mm2. The experiments were done for three frequencies - 20 kHz, 50 kHz and 100 kHz. All these intervals can be realized in the real production. The change of the four investigated parameters was analyzed in relation to the obtained roughness in the processing zone as a function of these four technological parameters and was compared with the corresponding color coordinates of the obtained color markings in these zones. It has been proven that each specific color is associated with surface structural changes as a result of the interaction between laser radiation with a certain laser energy density and the processed material. The present study is a small contribution to the topic of laser color marking of various materials, enabling the production of new surface properties.