Now showing 1 - 2 of 2
  • Publication
    Influence of pulse duration on the process of laser marking of CT80 carbon tool steel products
    (2021-02-25) ; ;
    Nikolay Angelov
    Depending on the processing of a particular material, the laser marking process must meet certain requirements. A certain laser peak intensity or fluency must be reached on the treatment surface above which the laser ablation process starts. Some experimental studies have shown that this particular marking threshold is related to many other parameters characterizing the laser source. This requires the realization of an appropriate combination of peak power or pulse energy and the radius of the beam in focus, the frequency of the laser pulses as well as the pulse duration. Achieving high resolution in the marking process requires optimal focusing, and this in turn is associated with the presence of high quality generated and propagated laser radiation. The study concerns the process of laser marking of CT80 carbon tool steel products with wide application in industry. Numerical experiments are performed with specialized software TEMPERATURFELD3D to obtain two-dimensional and three-dimensional temperature fields in the laser impact zone. The influence of the duration of the pulses of fibre laser on the process is investigated. Graphs of the dependence of normalized temperature on time and depth for pulse duration on 10 ns, 100 ns and 1 μs are discussed.
    Scopus© Citations 6
  • Publication
    Petar Tsvyatkov
    Emil Yankov
    ; ;
    In modern production, each finished product entering the market is identified by a special marking. Each mark must meet requirements such as good coding, easy to see, easy to read by certain readers, stable over time, etc. In the present casting, laser marking of the C75 steel was carried out with a fiber laser with an average power of P = 30 W and a wavelength of λ = 1064 nm. For semi-contrast marking, marking speeds from 100 mm/s to 700 mm/s, average power from 10 to 30 W, raster pitch from 20 µm to 60 µm, scanning frequency from 20 kHz to 150 kHz were investigated as constant parameters are the pulse duration τ =100 ns, number of repetitions N = 1 and defocus Δ f = 0 mm. The influence of the changing parameters on the contrast was established, and experimental dependences were constructed. The achieved research results show that to obtain a high contrast mark, the average power should be above 20 W, the scanning speed up to 300 mm/s, the scanning frequency up to 50 kHz and the raster pitch up to 40 µm.