Options
Lazov, Lyubomir
Research Output
INVESTIGATION OF THE INFLUENCE OF THE NUMBER OF REPETITIONS ON THE PROCESS OF LASER MARKING OF HS6-5-2-5 STEEL
2021, Lazov, Lyubomir, Nikolay Angelov, Teirumnieks, Edmunds
Today, methods for marking parts and components in industrial production are constantly improving, and they must meet several basic criteria for active traceability by consumers. The parameter that is of paramount importance for the quality of the marking is related to the contrast of the marked sign or QR code. To achieve optimal contrast, a number of technological factors and the functional relationships between them must be taken into account.The report examines the role of the number of repetitions on contrast in raster marking of HS6-5-2-5 tool steel products. The dependences of the number of repetitions on the speed and frequency are also taken into account - the main factors in the process of laser ablation. Graphs of the depth of the marking are drawn depending on the number of repetitions and the linear density of the pulses. The experiments were made with a fiber laser. By the performed analyses the working intervals of processing between the studied factors are deduced, allowing to achieve the desired optimal result.
LABORATORY EXERCISE TO DETERMINE CONTRAST IN LASER MARKING OF ARTICLES
2019, Lazov, Lyubomir, Teirumnieks, Edmunds, Teirumnieka, Ērika, Pavel Cacivkin, Nikolay Angelov, Tsanko Karadzhov
The laser marking has been established in recent years as one of the modern innovative methods for marking many industrial products. The report examines a new laboratory exercise for the subject Laser Technology, studied in some technical universities. A new approach is proposed to determine the contrast of the laser marking process. Described is the purpose and the main tasks as well as the new skills and knowledge that students can exercise through this laboratory exercise. Students implement a test matrix consisting of squares of a certain size using the raster marking method. Through the new laboratory exercise, students can explore and analyze the dependencies of the contrast of laser markings on different dimensions influencing the technological process. The capabilities of the new approach allow learners to become more familiar with the factors that influence the modern process of laser marking widely used in modern industry. The results of the experiments the students summarize using a new modern digital approach to analyze the contrast against the background of the marked surface. From the experimental graphical dependencies of the variation of the power and speed contrast, they draw conclusions about the optimal process parameters.
PRELIMINARY NUMERICAL ANALYSIS FOR THE ROLE OF SPEED ONTO LASER TECHNOLOGICAL PROCESSES
2019, Lazov, Lyubomir, Nikolay Angelov, Teirumnieks, Edmunds, Teirumnieka, Ērika
Studying the impact of speed on a number of laser processes such as marking, engraving, cutting, welding and others is crucial for the optimization of these technological processes. The processing speed, along with the frequency of laser pulses and their duration, also determines the time of action in the processing area and hence the absorbed quantity of electromagnetic energy. Based on numerical experiments with specialized software TEMPERATURFELD3D, the report analyzes the temperature variation in the processing area as a function of speed. The researches were analyzed for processing with two types of lasers emitting in the visible and infrared areas of the electromagnetic spectrum and two types of steels (tool and structural). From the course of the obtained temperature fields the dependence of temperature on the speed at two power densities was obtained. The obtained results help to make a preliminary assessment the speed work intervals for the processes as laser marking, laser engraving, laser cutting, laser welding and others. In this way, it is assisted in building an optimal concept for the passing of a particular technological process in function of the laser source, the material and the type of the technological operation.
METHOD FOR PRELIMINARY ESTIMATION OF THE CRITICAL POWER DENSITY IN LASER TECHNOLOGICAL PROCESSES
2019, Lazov, Lyubomir, Nikolay Angelov, Teirumnieks, Edmunds
For a number of new laser technology processes, it is essential to plan an experimental plan for primary experimental engineering activities in terms of quality. The assessment of the critical power density to reach the melting or evaporation temperature of the surface with a suitable theoretical model is an important stage in the development of a particular manufacturing technology. With the help of numerical experiments, this report provides a method for pre-examining the influence of wavelength on the laser technological process. The calculations are performed with a specialized program, running MATLAB. A series of temperature fields were obtained at a change in power density and wavelength at laser impact for concrete types of structural steel. The temperature dependence of the optical and thermo-physical characteristics of the material is also reporded. The analysis is made for laser technology complexes working with lasers emitting in the ultraviolet, visible, near and distant infrared areas. For these wavelengths the critical power density of melting and evaporation is determined.
INFLUENCE OF THE OVERLAP COEFFICIENT ON THE CONTRAST IN LASER MARKING OF C110W STEEL
2021, Nikolay Angelov, Lazov, Lyubomir, Teirumnieks, Edmunds
The laser marking process by melting samples of C110W carbon tool steel was studied. The experiments were performed with a fiber laser and a CuBr laser. A field of squares is marked in a raster method for different values of the overlap coefficient and power density. The contrast of the marking is determined on each marked square. From the obtained experimental data, graphs of the dependence of the contrast on the overlap coefficient for three power densities were drawn. The obtained results for the two lasers are compared and the influence of the wavelength is indirectly analysed. The working intervals of the overlap coefficient for the studied power densities for the two lasers at which the optimal contrast in the processing zone is obtained are determined.