Now showing 1 - 10 of 13
  • Publication
    LASER ABLATION OF PAINT COATINGS IN INDUSTRY
    A comparison is made between the laser and sandblasting methods for removing paint from industrial facilities. The advantages of laser ablation are discussed. The possibilities of laser paint removal systems - stationary and moving - are shown. The main factors influencing the laser ablation process and the indicators that determine the quality of the obtained surface are systematized. Researchers' publications on this technological process are analyzed.
  • Publication
    INVESTIGATION OF THE INFLUENCE OF THE NUMBER OF REPETITIONS ON THE PROCESS OF LASER MARKING OF HS6-5-2-5 STEEL
    (2021) ;
    Nikolay Angelov
    ;
    Today, methods for marking parts and components in industrial production are constantly improving, and they must meet several basic criteria for active traceability by consumers. The parameter that is of paramount importance for the quality of the marking is related to the contrast of the marked sign or QR code. To achieve optimal contrast, a number of technological factors and the functional relationships between them must be taken into account.The report examines the role of the number of repetitions on contrast in raster marking of HS6-5-2-5 tool steel products. The dependences of the number of repetitions on the speed and frequency are also taken into account - the main factors in the process of laser ablation. Graphs of the depth of the marking are drawn depending on the number of repetitions and the linear density of the pulses. The experiments were made with a fiber laser. By the performed analyses the working intervals of processing between the studied factors are deduced, allowing to achieve the desired optimal result.
    Scopus© Citations 1
  • Publication
    Investigation of Surface Structure in the Laser Marking Process as a Function of Speed and Raster Step
    In this research, an experiment was conducted to change the technological properties of the surface by laser marking. The influence of the speed v of 50 mm/s, 75 mm/s and 100 mm/s and the raster step Δx from 20 µm to 80 µm at a constant average power P = 19.2 W and pulse duration τ = 4 ns was investigated. These parameters during the laser marking of AISI 304L steel have a significant change in microhardness and surface roughness. High hardness was found to be achieved at higher powers and small pitch. Analysis of the results showed that as the raster step increases, the roughness of the marked sample decreases. The effect of linear energy density and overlap factor on the process was also investigated. The microhardness of the machined surfaces increases with an increase in the linear energy density and the overlap coefficient, in the first case the dependence is almost linear, and in the second - nonlinear. Varying the marking speed and raster pitch in laser surface texturing of AISI 304L steel has a significant effect on the surface hardness and roughness, changing HV from 260 HV to 766.5 HV and Ra from 1.75 µm to 4.3 µm, respectively, which are the subject of the present analysis. research.
  • Publication
    PRELIMINARY NUMERICAL ANALYSIS FOR THE ROLE OF SPEED ONTO LASER TECHNOLOGICAL PROCESSES
    Studying the impact of speed on a number of laser processes such as marking, engraving, cutting, welding and others is crucial for the optimization of these technological processes. The processing speed, along with the frequency of laser pulses and their duration, also determines the time of action in the processing area and hence the absorbed quantity of electromagnetic energy. Based on numerical experiments with specialized software TEMPERATURFELD3D, the report analyzes the temperature variation in the processing area as a function of speed. The researches were analyzed for processing with two types of lasers emitting in the visible and infrared areas of the electromagnetic spectrum and two types of steels (tool and structural). From the course of the obtained temperature fields the dependence of temperature on the speed at two power densities was obtained. The obtained results help to make a preliminary assessment the speed work intervals for the processes as laser marking, laser engraving, laser cutting, laser welding and others. In this way, it is assisted in building an optimal concept for the passing of a particular technological process in function of the laser source, the material and the type of the technological operation.
    Scopus© Citations 13
  • Publication
    Modification of the roughness of 304 stainless steel by laser surface texturing (LST)
    (2023) ; ;
    Nikolay Angelov
    ;
    Emil Yankov
    Surface texturing is one of the most effective approaches to modifying the surface to improve many properties: tribological, corrosion resistance, microhardness and others characteristics of a number of engineering materials. Among the surface texturing techniques developed in recent years, the most widely used method is the laser surface texturing method (LST) due to its high flexibility, superior texturing accuracy and good process controllability and reproducibility. With its rapid development, LST has attracted considerable attention in various industries such as automotive, biomedical and aerospace. The present study considers the changes in roughness in different modes of laser texturing of stainless steel specimens 304. The effects and role of individual laser parameters on the change in roughness are analyzed as a main characteristic of the surface properties of the processed material. Heating and its surface melting is one of the studied effects and its role in changing the roughness. The focus of the study is on the process of laser–material interaction as a function of absorbed energy density, pulse frequency, scan rate, and overlap coefficients leading to different effects of LST parameters. It has been found that increasing the energy density, accompanied by a decrease in the frequency and speed of scanning, can increase the surface roughness.
    Scopus© Citations 3
  • Publication
    Investigation of the Influence of Some Parameters on the Process of Color Laser Marking
    (2023)
    Emil Yankov
    ;
    ; ;
    Nikolay Angelov
    The research and development of laser marking technology offers numerous advantages and applications in a variety of industries, from manufacturing and electronics to healthcare and beyond. In industries such as aerospace and automotive, where components must adhere to strict regulatory standards, laser marking can provide the necessary traceability and compliance. Investing in its research and development improves precision, efficiency and innovation, ultimately contributing to advancements in various sectors and driving economic growth.For this purpose, various surface treatment methods are being studied, including laser marking. As can be seen from our previous studies and those of other authors, laser marking of steel surfaces is a complex process and depends on the complex relationships between a number of technological parameters. In this study, we focus on the influence of four of them (parameters: processing speed, laser pulse frequency, pitch between raster lines during laser processing and energy density). During the experiments, the raster step was varied in the range of 20 µm to 80 µm, the velocity was in the range of 25 mm/s to 125 mm/s, and the density was in the range of 5.82 J/mm2 to 29.12 J/mm2. The experiments were done for three frequencies - 20 kHz, 50 kHz and 100 kHz. All these intervals can be realized in the real production. The change of the four investigated parameters was analyzed in relation to the obtained roughness in the processing zone as a function of these four technological parameters and was compared with the corresponding color coordinates of the obtained color markings in these zones. It has been proven that each specific color is associated with surface structural changes as a result of the interaction between laser radiation with a certain laser energy density and the processed material. The present study is a small contribution to the topic of laser color marking of various materials, enabling the production of new surface properties.
  • Publication
    INFLUENCE OF THE OVERLAP COEFFICIENT ON THE CONTRAST IN LASER MARKING OF C110W STEEL
    (2021)
    Nikolay Angelov
    ;
    ;
    The laser marking process by melting samples of C110W carbon tool steel was studied. The experiments were performed with a fiber laser and a CuBr laser. A field of squares is marked in a raster method for different values of the overlap coefficient and power density. The contrast of the marking is determined on each marked square. From the obtained experimental data, graphs of the dependence of the contrast on the overlap coefficient for three power densities were drawn. The obtained results for the two lasers are compared and the influence of the wavelength is indirectly analysed. The working intervals of the overlap coefficient for the studied power densities for the two lasers at which the optimal contrast in the processing zone is obtained are determined.
  • Publication
    Numerical modeling and simulation for laser beam welding of ultrafine-grained aluminium
    (2021) ; ;
    Ivo Draganov
    ;
    Nikolay Angelov
    Laser beam welding of aluminium offers huge potential for a wide variety of welding of different thickness parts with the method of thermal conductivity due to the relatively high difference between melting temperature and evaporation. However, due to the high melting temperature and good thermal conductivity of this light metal, the temperature gradients during the welding process are usually high, causing residual stresses in the weld, which can lead to undesirable deterioration of the weld pool properties and the quality of the process. Physical modelling and simulations of the laser welding process are powerful tools for gaining a fundamental understanding of the technological process. They are also a suitable tool for preliminary assessment of the intervals in which the real preliminary experiments for process optimization should take place. This work is devoted to the numerical modelling of the process of welding ultrafine-grained aluminium using a fibre laser. A three-dimensional model of the welding process was created, using the finite element method implemented in the program ABAQUS. The temperature fields at depth z and on the surface x, y in the welded samples is determined. The temperature change as a function of time for different coordinates of the weld is also analysed. During numerical calculations, the power, machining speed and diameter of the workplace are variable. The obtained results are compared with real experiments conducted in the laboratory by other researchers.
    Scopus© Citations 2
  • Publication
    Influence of pulse duration on the process of laser marking of CT80 carbon tool steel products
    (2021) ; ;
    Nikolay Angelov
    Depending on the processing of a particular material, the laser marking process must meet certain requirements. A certain laser peak intensity or fluency must be reached on the treatment surface above which the laser ablation process starts. Some experimental studies have shown that this particular marking threshold is related to many other parameters characterizing the laser source. This requires the realization of an appropriate combination of peak power or pulse energy and the radius of the beam in focus, the frequency of the laser pulses as well as the pulse duration. Achieving high resolution in the marking process requires optimal focusing, and this in turn is associated with the presence of high quality generated and propagated laser radiation. The study concerns the process of laser marking of CT80 carbon tool steel products with wide application in industry. Numerical experiments are performed with specialized software TEMPERATURFELD3D to obtain two-dimensional and three-dimensional temperature fields in the laser impact zone. The influence of the duration of the pulses of fibre laser on the process is investigated. Graphs of the dependence of normalized temperature on time and depth for pulse duration on 10 ns, 100 ns and 1 μs are discussed.
    Scopus© Citations 6