Now showing 1 - 2 of 2
  • Publication
    A Review of Methods for Reduction of Polycyclic Aromatic Hydrocarbons from Waste Water and Flue Gases
    (2015-08-08) ;
    I. Semjonova
    This review describes methods which can be used for the reduction of the polycyclic aromatic hydrocarbon (PAH) emissions from wastewater and flue gases including principles of operation of the methods and studies of their effectiveness. There are discussed both methods, which nowadays are already used industrially, and their improvement opportunities as well as recent technological trends in this field. The methods have been classified into two main categories: flue gas treatment and wastewater treatment.
    Scopus© Citations 1
  • Publication
    Influence of pulse duration on the process of laser marking of CT80 carbon tool steel products
    (2021-02-25) ; ;
    Nikolay Angelov
    Depending on the processing of a particular material, the laser marking process must meet certain requirements. A certain laser peak intensity or fluency must be reached on the treatment surface above which the laser ablation process starts. Some experimental studies have shown that this particular marking threshold is related to many other parameters characterizing the laser source. This requires the realization of an appropriate combination of peak power or pulse energy and the radius of the beam in focus, the frequency of the laser pulses as well as the pulse duration. Achieving high resolution in the marking process requires optimal focusing, and this in turn is associated with the presence of high quality generated and propagated laser radiation. The study concerns the process of laser marking of CT80 carbon tool steel products with wide application in industry. Numerical experiments are performed with specialized software TEMPERATURFELD3D to obtain two-dimensional and three-dimensional temperature fields in the laser impact zone. The influence of the duration of the pulses of fibre laser on the process is investigated. Graphs of the dependence of normalized temperature on time and depth for pulse duration on 10 ns, 100 ns and 1 μs are discussed.
    Scopus© Citations 6