Now showing 1 - 5 of 5
  • Publication
    LASER ABLATION OF PAINT COATINGS IN INDUSTRY
    A comparison is made between the laser and sandblasting methods for removing paint from industrial facilities. The advantages of laser ablation are discussed. The possibilities of laser paint removal systems - stationary and moving - are shown. The main factors influencing the laser ablation process and the indicators that determine the quality of the obtained surface are systematized. Researchers' publications on this technological process are analyzed.
  • Publication
    Investigation of Surface Structure in the Laser Marking Process as a Function of Speed and Raster Step
    In this research, an experiment was conducted to change the technological properties of the surface by laser marking. The influence of the speed v of 50 mm/s, 75 mm/s and 100 mm/s and the raster step Δx from 20 µm to 80 µm at a constant average power P = 19.2 W and pulse duration τ = 4 ns was investigated. These parameters during the laser marking of AISI 304L steel have a significant change in microhardness and surface roughness. High hardness was found to be achieved at higher powers and small pitch. Analysis of the results showed that as the raster step increases, the roughness of the marked sample decreases. The effect of linear energy density and overlap factor on the process was also investigated. The microhardness of the machined surfaces increases with an increase in the linear energy density and the overlap coefficient, in the first case the dependence is almost linear, and in the second - nonlinear. Varying the marking speed and raster pitch in laser surface texturing of AISI 304L steel has a significant effect on the surface hardness and roughness, changing HV from 260 HV to 766.5 HV and Ra from 1.75 µm to 4.3 µm, respectively, which are the subject of the present analysis. research.
  • Publication
    Effect of Laser Marking Speed, Power and Pitch on Hardness and Roughness of Aisi 304l
    In this study, an experiment was conducted to change the technological properties of the surface by infra-red laser marking. The influence of power, speed and raster step was investigated. These parameters during laser marking of AISI 304L steel have a significant change on the microhardness and surface roughness. It was found that high stiffness is achieved at higher powers and small pitch. An analysis of the results showed that as the raster step increases, the roughness of the marked sample decreases. The influence of linear energy density and overlap factor on the process was also investigated. The microhardness of the treated surfaces increases with an increase in the linear energy density and the overlap coefficient, and in the first case the dependence is almost linear, and in the second - non-linear.
  • Publication
    INVESTIGATION OF THE INFLUENCE OF TECHNOLOGICAL PARAMETERS OF LASER MARKING ON THE DEGREE OF CONTRAST
    (2023)
    Petar Tsvyatkov
    ;
    Emil Yankov
    ;
    ; ;
    In modern production, each finished product entering the market is identified by a special marking. Each mark must meet requirements such as good coding, easy to see, easy to read by certain readers, stable over time, etc. In the present casting, laser marking of the C75 steel was carried out with a fiber laser with an average power of P = 30 W and a wavelength of λ = 1064 nm. For semi-contrast marking, marking speeds from 100 mm/s to 700 mm/s, average power from 10 to 30 W, raster pitch from 20 µm to 60 µm, scanning frequency from 20 kHz to 150 kHz were investigated as constant parameters are the pulse duration τ =100 ns, number of repetitions N = 1 and defocus Δ f = 0 mm. The influence of the changing parameters on the contrast was established, and experimental dependences were constructed. The achieved research results show that to obtain a high contrast mark, the average power should be above 20 W, the scanning speed up to 300 mm/s, the scanning frequency up to 50 kHz and the raster pitch up to 40 µm.
  • Publication
    INVESTIGATION OF SURFACE ROUGHNESS OF CARBON STEEL MACHINED PARTS AFTER NANOSECOND FIBER LASER MARKING
    (2023)
    Petar Tsvyatkov
    ;
    Emil Yankov
    ;
    ; ;
    Laser marking with a nanosecond fiber laser is one of the most common ways to permanently mark various engineering materials. The roughness of the machined surface and its observation is essential to evaluate the impact on the contrast of the marking as well. Experimental studies of the roughness obtained as a result of the laser marking, were inspected using a 3D measuring laser microscope OLYMPUS LEXT OLS5100. Analysis of the graphical dependence of the roughness function on the four process parameters: laser power, frequency, speed of marking and step.