Now showing 1 - 3 of 3
  • Publication
    New device for air disinfection with a shielded UV radiation and ozone
    (2021) ;
    Mezule, L.
    ;
    ;
    Pizica, V.
    ;
    Denisova, V.
    ;
    Skudra, A.
    ;
    ; ;
    Juhna, T.
    Indoor air disinfection has become particularly relevant recently because of the Covid-19 pandemics. A shielded device for air and surface disinfection with UV radiation and ozone has been developed. It contains 28 low intensity (11 W) UV lamps (254 nm) in a specially designed three-dimensional grid to provide a large flow cross-sectional area and long path for the air particles to be irradiated. The device can be used in medical institutions, veterinary clinics, manufacturing plants, public premises, poultry, and livestock farms. It does not generate air-ions and ozone concentrations do not exceed the allowed 8-hour average values. The large number of UV lamps and powerful fans ensure air disinfection in large rooms in a relatively short time (400 m3 h -1 ). Simultaneously, the floor surface under the appliance is disinfected. Disinfection efficiency tests demonstrated 99.9999% reduction for Escherichia coli, Staphylococcus aureus and Pseudomonas phage Φ6 aerosols within a single transfer through the system (10 seconds of treatment). The housing of the device protects from direct UV radiation; therefore, people can be in the room during the operation of the device.
  • Publication
    RESEARCH OF LASER MARKING AND ENGRAVING ON BRASS ALLOY 260
    Brass Alloy 260 is widely used in mechanical engineering (odometer contacts, radiator cores), electrical engineering (electrical connectors, screw shells), plumbing (bathroom fixtures), consumers (watch parts, buttons, lamps) etc. The paper presents an analysis of the laser marking and engraving process. The ability Rofin powerline f20 laser system to engrave on Brass Alloy 260 is described. Recommendations are given on choosing the right parameters for laser marking and engraving of Brass Alloy 260 products.
    Scopus© Citations 1
  • Publication
    Laser hardening process optimization using FEM
    In given work a method for optimization of the process of laser hardening of steel parts is developed. The approach is based on the finite element method (FEM) using computer program “COMSOL Multiphysics” (module Heat Transfer in Solids) – software for multi-physical processes simulation. This method allows to reduce the number of laser hardening experiments, replacing them with numerical calculations, and to find the optimal parameters of the used laser equipment. To perform the calculations it is necessary to know the hardening temperature range of the particular steel grade, the martensite formation start temperature, the critical value of the cooling rate, the material density, the thermal conductivity k = k(T), the specific heat capacity Cp = Cp(T) and the surface reflectivity R = R(T, λ), where T temperature, λ – wavelength of laser beam. Depending on the laser power, the feed rates of the laser beam, the spot size and the distribution of energy in it, the temperature field is calculated for the steel part in different moments of time. Analysing these data it is possible to determine the thickness of the hardened layer or to predict damage to the material of a given steel part due to heat treatment. The method has been tested experimentally.