Repository logo
  • English
  • Latviešu
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • English
  • Latviešu
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Faculty of Engineering
  3. Scientific publications
  4. Scientific papers (IF)
  5. Investigation of the Change in Roughness and Microhardness during Laser Surface Texturing of Copper Samples by Changing the Process Parameters
 
  • Details
Options

Investigation of the Change in Roughness and Microhardness during Laser Surface Texturing of Copper Samples by Changing the Process Parameters

Journal
Coatings
Date Issued
2023
Author(s)
Risham Singh
Lazov, Lyubomir 
Rezekne Academy of Technologies 
Emil Yankov
Nikolay Angelov
DOI
10.3390/coatings13111970
Abstract
The aim of this research is to achieve a high-quality and long-lasting laser marking of ammunition, which is of interest to the defense industry. The study is about the effects of speed, raster pitch and power on the roughness and microhardness of the marked areas of copper samples. The experiments were carried out with a fiber laser and a copper bromide laser—modern lasers widely used in industrial production. Laser power, scan speed and raster step were varied to determine their effects on the resulting microhardness and surface roughness. The lasers operate in different wavelength ranges, with the optical laser operating at 1064 nm in the near-infrared region and the copper bromide laser at 511 nm and 578 nm in the visible region, allowing the influence of wavelengths on the process to be investigated. The roughness and microhardness velocity dependence for three powers and two pulse durations for the fiber laser were obtained from the experimental data. The dependence of roughness and microhardness on the raster step for both types of lasers was also demonstrated.
File(s)
 main article: coatings-13-01970.pdf (11.79 MB)
Scopus© citations
0
Acquisition Date
Jan 12, 2024
View Details
google-scholar
Views
Downloads
User Guide
  • Documentation

© Rezekne Academy of Technologies

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback