Now showing 1 - 2 of 2
  • Publication
    Modification of Aluminum 1050 and 2219 Alloys Using CuBr Nanosecond Laser for Hydrophobic and Hydrophilic Properties
    This study investigates the use of a CuBr vapor nanosecond laser with a 510 nm/578.2 nm wavelength for the surface treatment of 1050 aluminum and 2219 aluminum alloys. Laser-induced periodic surface structuring was used to optimize processing parameters to achieve hydrophobic and hydrophilic properties on the surface. The wetting properties were measured and the roughness results (Ra, Rz, Rq) evaluated. Prior to and after laser treatment, surface wetting and roughness changes were investigated. The wetting study showed that the maximum contact angle between a droplet of deionized water and the treated surface can be reached between more than 140 degrees and less than 10 degrees, which, respectively, is a superhydrophobic and superhydrophilic surface. Compared with the untreated surface, wetting increased by more than 2 times and decreased by more than 8 times. Overall, experiments show the dependence of wetting properties on laser input parameters such as scan speed and scan line distance with different delivered energy amounts. This study demonstrates the possibility of laser parameter optimizations which do not require auxiliary gases and additional processing of the resulting surfaces to obtain different wetting properties on the surface. The findings described in this article suggest that the CuBr laser surface treatment method is a promising method for industrial applications where surfaces with special wetting and roughness properties are required, for example, the laser marking of the serial number of parts used in wet environments such as aerospace, shipbuilding, and defense industries.
  • Publication
    RESEARCHING THE PROCESS OF LASER STRUCTURING OF THE SURFACE OF ALUMINUM
    (2023)
    Kevins Bulavskis
    ;
    Emil Yankov
    ;
    ;
    In this scientific study, the ability to modify the surface using nanosecond 1064 nm fiber laser by controlling the speed and scanning line step in the marking process was demonstrated. An experimental matrix for laser marking was developed, consisting of 8 columns for marking line step and 5 rows for marking speed. The laser marked surfaces were measured using a laser scanning microscope and compared with the surface as supplied. From the obtained deviations of roughness Ra, Rz and Rq as a function of marking speed and marking line step, graphical dependencies were constructed for comparative analysis. The modified roughness is also compared with the roughness as supplied. Within this research the effect of laser treatment on the hydrophilicity/hydrophobicity of the surface was studied as well. Plots of dependences of the contact angle CA, the marking line step Δx and the overlap coefficient Ksoc are plotted.