Options
Investigation of Surface Structure in the Laser Marking Process as a Function of Speed and Raster Step
Date Issued
2023
Author(s)
Emil Yankov
University of Ruse Angel Kanchev
Nikolay Angelov
Technical University of Gabrovo
DOI
10.2139/ssrn.4551170
Abstract
In this research, an experiment was conducted to change the technological properties of the surface by laser marking. The influence of the speed v of 50 mm/s, 75 mm/s and 100 mm/s and the raster step Δx from 20 µm to 80 µm at a constant average power P = 19.2 W and pulse duration τ = 4 ns was investigated. These parameters during the laser marking of AISI 304L steel have a significant change in microhardness and surface roughness. High hardness was found to be achieved at higher powers and small pitch. Analysis of the results showed that as the raster step increases, the roughness of the marked sample decreases. The effect of linear energy density and overlap factor on the process was also investigated. The microhardness of the machined surfaces increases with an increase in the linear energy density and the overlap coefficient, in the first case the dependence is almost linear, and in the second - nonlinear. Varying the marking speed and raster pitch in laser surface texturing of AISI 304L steel has a significant effect on the surface hardness and roughness, changing HV from 260 HV to 766.5 HV and Ra from 1.75 µm to 4.3 µm, respectively, which are the subject of the present analysis. research.